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Abstract  
 
There is a need to better identify methods for selecting GCM results for use in regional impacts studies. It 
builds on an approach adopted by several published assessment studies, the paper by Smith and 
Chandler (2009) and discussions held at the “GCM Selection for Regional Studies Workshop” held at the 
Bureau of Meteorology, 23-24 October, 2008. 
 
 
Project Objectives 
 
The objective of this project is to document and assess methods for generating inputs to hydrological 
models and extend delivery of projections across Victoria. 

 
 
Significant research highlights, breakthroughs, and snapshots 
 

 This project has summarized a number of GCM assessments which compare features of the 
simulated climate from 22 CMIP3 GCMs with available observations. The result is a ranking of 
the GCMs which indicates some consistently well performed GCMs and some consistently 
poorly performed GCMs. When we consider the projected changes in annual rainfall for three 
Australian regions from all the GCMs, we find little evidence that rankings provide much 
discrimination for Northern Australia and south-eastern Australia (at least for the current 
GCMs). However, it is apparent that the better performing GCMs indicate a drier future for 
south-west Western Australia than the remainder.  

 
 On a practical level, it is recommended that researchers: 

 
o Consider excluding the results from the poorer performing GCMs. There is enough 

evidence to indicate that up to nine GCMs could be excluded on the basis of this study. 
There is very little reason to include the results from at least one (GISSEH). 
 

o Plot projected changes as a function of GCM rankings (as done in Figure 1) in order to 
detect evidence of clustering. This can potentially lead to less uncertain results (i.e. a 
smaller range). 

 
 
Progress on meeting objectives 
 

1. Review the work on downscaling techniques and write an overview report that describes the 
positives and negatives of the various techniques and recommends which techniques to use in 
which circumstances.  

 
This was not completed during the duration of the project. Reviews are already available elsewhere, and 
modelling experiments to assess and compare the techniques are planned for Phase 2 of SEACI. 
 

2. Write a guideline on how best to get future climate data to drive hydrological models based 
on current climate change science and hydroclimate. 

 
A report has been prepared (see attachment) which provides a guide to GCM selection for use in regional 
climate change studies. This has been delivered to two CSIRO sustainable yields projects (McVicar et al., 
2009; Post et al., 2009). 

 
3. Provide the necessary climate data as inputs into runoff models across the MDB and southern 

Victoria to provide a suite of updated rainfall, temperature, evaporation, and runoff 
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projections at 5 km resolution at annual and seasonal timescales.  Provide mapped outputs at 
the 5 km resolution and also present results as averages across appropriate spatial units 
determined in consultation with water resources managers (e.g. averages for upper, middle 
and lower river basins for Victoria and the Catchment Management Authorities). 
 

Due to time limitations, no new projections were developed during the duration of this project. 5 km 
climate and runoff projections for the Murray-Darling Basin  and Victoria are already available in 
www.climatechangeinaustralia.gov  and from Phase 1 of SEACI. Improved projections with more 
research will come from Phase 2 of SEACI.  
 
Summary of links to other projects 
 
Recommendations for GCM selection have been provided to the North Australia Sustainable Yields 
Project (McVicar et al., 2009) and the Tasmanian Sustainable Yields Project (Post et al., 2009). The 
review of existing methods is a precursor to the improved methods to be developed under Phase 2 of 
SEACI. 
 
Publications arising from this project 
 
Chiew FHS, Kirono DGC, Kent D and Vaze J (2009) Assessment of rainfall simulations from global 
climate models and implications for climate change impact on runoff studies. MODSIM 2009 
International Congress on Modelling and Simulation, Modelling and Simulation Society of Australian 
and New Zealand, Cairns, July 2009 
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GCM selection for regional studies - Ian Smith 
 

1. Introduction 
 
This report is based on a need to better identify methods for selecting GCM results for use in regional 
impacts studies. It builds on an approach adopted by several published assessment studies, the paper 
by Smith and Chandler (2009) and discussions held at the “GCM Selection for Regional Studies 
Workshop” held at the Bureau of Meteorology, 23-24 October, 2008. 
 
In addressing the problem of GCM selection, it seems logical to assume that a necessary condition for 
utilizing climate change results from a GCM is that it provides a credible representation of the present 
day climate. Recent studies have indicated that some GCMs suffer relatively large errors associated 
with simulations of present day climate and that these raise doubts about the quality of their results 
for climate change, particularly at regional scales. Whether these particular results should be 
included in any sample used to generate climate change projections is a decision for others. However, 
there is a definite need for some form of overall assessment which can assist researchers in their 
selection of GCMs. The aim here is to provide just such an assessment so that researchers can chose to 
reject or weighted model results. 
 
2. Not all available GCM results are equal 
 
Despite the claim that global climate models are based on the equations of motion and physics of 
transport and exchange of heat, momentum and water, this does not guarantee reliability. The CMIP3 
data set contains the results from over 20 different GCMs which were used to provide climate change 
simulations for the IPCC Fourth Assessment Report (AR4) (IPCC, 2007). These results supersede 
those generated for the Third Assessment Report (AR3) (IPCC, 2005). While the more recent GCMs 
represent an overall improvement over the AR3 GCMs, it is also true that the CMIP3 sample contains 
some results from GCMs which can be identified as inferior to some of those of the earlier AR3 GCMs. 
Therefore, the idea that the CMIP3 sample represents the optimum sample for producing climate 
change projections, while desirable, is not strictly true. However, the climate change community 
generally assumes this to be the case since they invariably ignore the results from the AR3 models in 
favour of more recent and, it is assumed, better performing models. 
 
Major differences between GCMs include: 
 

 Horizontal resolution e.g. 400 km versus 125 km; 
 Physics  e.g. interactive sea ice versus prescribed sea ice; 
 Parameterizations e.g. convection; 
 Flux adjustments e.g. MRI-CGCM3.2, INMCM3.0, CGCM3.1(T47), and CGCM3.1(T63) ; 
 Corrupted outputs e.g. the BCC-CM1 results (Jun et al., 2008); and 
 Model flaws, which are hard to detect but are likely to be present in one form or another. 

 
The effects of the above factors can often be detected when comparing the GCM results with 
observations of present day climate. In general, the GCMs provide reasonably good (and improving) 
simulations of global-scale average quantities (such as temperature, MSLP and rainfall). However, it 
must be recognized that the GCMs are developed and tuned to do exactly this. Tuning for global-scale 
averages does not guarantee the results at regional scales, nor for all fields. It is apparent that, when 
comparing the results for multiple fields at large scales, or single fields at regional scales, that the 
there exist some relatively poorly performing GCMs. The differences with observations can be quite 
large in some cases, sometimes sufficiently large to cast doubt about their appropriateness for 
inclusion in any climate change projections. 
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This is also recognized by the fact that methods have been adopted which weight some model results 
in favour of others depending on their level of “skill”. The issue of weighting models based on 
performance is a controversial topic, with some arguing for no weighting on the grounds that there is 
no consensus concerning suitable metrics (Stainforth et al., 2007; Tebaldi and Knutti, 2007) or that, 
for any given metric, quite often it makes little sense to calculate a weighting factor for a poorly 
performing model that is greater than that of a very poorly performing model. Raisanen (2007) and 
Stainforth et al. (2007) recommend rejecting model results when it can be demonstrated that they 
suffer from large biases with respect to current climate.  
 
Here we summarize the results from a range of GCM model assessments from various authors and 
indicate which GCMs can be described as consistent underperformers, irrespective of variable, region 
or scale of interest. It is argued that consistent failure across these assessments indicates potentially 
serious flaws which can be regarded as sufficient to render these GCMs inappropriate for climate 
change projections. Furthermore, we also provide values for various rankings and metrics which can 
be used to detect evidence of clustering, or model agreement.  
 
3.  Methods of assessment 
 
Quantifying model performance can be difficult because of the range of metrics, variables, spatial 
scales and temporal scales of interest. It is fair to say that any measure of performance can be 
subjective, simply because it will tend to reflect the priorities of the person conducting the 
assessment. When different studies yield different measures of performance, this can be a problem 
when deciding on how to interpret a range of results in a different context. On the other hand, there is 
evidence that some models consistently perform poorly, irrespective of the type of assessment.  
 
One method for combining the results of various models is referred to as the reliability ensemble 
average (REA) approach (Giorgi and Mearns, 2002, 2003) and allows for weightings which reflect 
model performance and which also penalizes outliers, or results that appear to be very different from 
the sample mean. This last step has been severely criticized (e.g. Raisanen, 2007) and the method has 
been refined over time in order to remove this criterion (Tebaldi and Knutti, 2007).  
 
Reichler and Kim (2007) demonstrated that, at the global scale, the errors associated with 
simulations of current climate, on average, tend to reduce with subsequent generations of models. 
However, it is also true that the errors associated with some models from previous generations are 
less than the errors associated with some models of subsequent generations and that the errors 
associated with some models can easily be described as unacceptable. They assessed the biases of 21 
models using annual average values of 14 atmospheric and oceanic variables across the globe as a 
guide. Their results clearly demonstrated the fact that the errors of the poorer performing models can 
be up to twice those of the better performing models (and, that one model in particular stands out as 
very much poorer than the rest).  
 
Whetton et al. (2007) demonstrated that model performance, based on the simulation of the current 
climate, is relevant to the performance of simulations of the future climate. The similarity between 
different models was quantified by comparing simulated regional and global patterns of seasonal 
average temperature, mean sea level pressure (MSLP) and precipitation. Using the results from 17 
models, they found that, for most extra-tropical regions of the globe, models with similar patterns for 
the current climate tended to yield similar change patterns of change. They found powerful cross-
variable connections (e.g. current climate precipitation was the best variable for discriminating 
temperature change) and that comparing global patterns of current climate can be as useful for 
discriminating regional patterns of change as comparing regional patterns of current climate. These 
features can include simple long-term averages at the grid scale, spatial patterns at the continental 
scale, the annual cycle (based on average monthly values), interannual variability (e.g. El Nino 
Southern Oscillation – ENSO – events) where this is important and, finally, although not considered 
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here, recent long-term trends which may, or may not, be the result of greenhouse gas forcing of the 
global climate. 
 
Several studies have been published that involve the development of projections for Australia and all 
adopt different methods. Suppiah et al. (2007) (referred to hereafter as S7) assessed the performance 
of 23 models with respect to how well they reproduced patterns of seasonal average temperature, 
mean sea level pressure (MSLP) and rainfall over the Australian continent. They reduced the sample 
to 15 by rejecting those models which frequently failed to meet certain root mean square error 
(RMSE) and spatial correlation thresholds across the four seasons. They then generated climate 
change projections based on the average and range of this 15-member sample without discriminating 
between the results. 
 
Watterson (2008) described a method for generating projections using PDFs that allow for the 
weighting of  model results via the M-statistic of Watterson (1996), determined from simulated and 
observed patterns of seasonal average temperature, MSLP and rainfall over the Australian continent. 
An M value between one (perfect match) and zero (no-skill) was obtained for each of 23 models for 
each of the three variables for each of the four seasons. The average of the 12 M skill scores for each 
model ranged from between about 0.3 to 0.7.  
 
Perkins et al. (2007) assessed 14 models based on their ability to simulate daily rainfall and daily 
minimum and maximum temperatures for 12 regions of Australia. They focussed on the ability of the 
models to reproduce the frequency distribution functions of the three variables. They noted that 
some of the models exhibited considerable skill and that it was possible to identify relatively poorly 
performing models. Maximo et al. (2007) took the same approach but focussed on a single region of 
Australia known as the Murray-Darling Basin (MDB). They assessed 17 models and showing that 
some were clearly flawed, with only four recommended for use in impact assessments over this 
region. Pitman (private communication) used the results of the Perkins et al. (2007) assessment to 
exclude poorly performing models and obtained less uncertain projections of changes to daily 
temperatures and rainfall, even though the mean changes were not substantially different to those 
previously. Note that the daily data required for the assessment was only available for 16 of the 23 
available models. Charles (2007) also assessed model performance over the MDB but focussed on the 
ability of the models to simulate both daily MSLP patterns and the seasonal cycle of monthly average 
MSLP. Of the 11 models and two other models assessed, four were clearly superior to the others.  
Smith and Chandler (2009) adopted a similar approach to Suppiah et al.(2007) but restricted their 
assessment to rainfall only, using RMSE and spatial correlation thresholds to stratify the performance 
of 22 GCMs (see Appendix A). 
 
Finally, if we are interested in the effects of co-varying long-term changes in the atmosphere and 
ocean, then it makes sense to also assess models on their ability to simulate the ENSO phenomenon, 
which involves co-varying changes in the atmosphere and ocean over several years. Van Oldenborgh 
et al. (2005) considered how well models were able to realistically simulate a number of important 
ENSO features. Of the 19 models that were assessed, only six were judged to be acceptable. The GISS-
AOM and GISS-ER models (for example) were found to exhibit no ENSO variability at all while other 
models had either too short an ENSO period, too small or too large sea surface temperature (SST) 
amplitude variations or variability concentrated in the wrong part of the Pacific. 
 
3. Summary of GCM assessments 
 
The GCM data set assessed here comprises results from 22 models which are available from the 
PCMDI web site: http://www-pcmdi.llnl.gov/ipcc/info_for_analysts.php. Officially known as the 
WCRP CMIP3 multi-model dataset or CMIP3 models for brevity, these are listed, in Appendix A. We 
have omitted the BCC-CM1 model results because of previously identified problems with these data 
(Jun et al., 2008). Table 2 summarizes the performance of the models based on various criteria 
adopted in a number of studies. 

http://www-pcmdi.llnl.gov/ipcc/info_for_analysts.php
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Table 2.  Summary of model assessments: 
 
 

 A B C D E F G H I J K 

 Aus Aus Aus Aus ENSO North MDB MDB GLOBE NH SH 

      Pacific      
BCCR-BCM2.0 5 5 590 Yes  No No  No  No 
CCSM3 0 2 677 No No Yes No  Yes 7 Yes 

CGCM3.1(T47) 1 8 518 No No Yes Yes No Yes 10  
CGCM3.1(T63) 1 10 478   Yes No  Yes  Yes 

CNRM-CM3          0 4 542  No No  No No 3 No 
CSIRO-Mk3.0 1 7 601 Yes No No Yes No No 14 Yes 
ECHAM5/MPI 0 1 700 Yes Yes No No No Yes 1 Yes 
ECHO-G 0 4 632 Yes No Yes Yes No    

FGOALS-G1.0 2 2 639 No No No Yes  No 15 No 
GFDL-CM2.0 0 2 671 Yes Yes Yes No Yes Yes 5 No 
GFDL-CM2.1 0 2 672 Yes Yes Yes No Yes Yes 2 Yes 
GISS-AOM 1 8 564 No No No Yes  No   

GISS-EH 5 14 304  No No   No  No 
GISS-ER 0 8 515 Yes No No No No No 12 No 
INM-CM3.0 1 7 627  No No  Yes No 8 No 
IPSL-CM4 2 14 505 No No No Yes  No 11 No 
MIROC3.2(hires)  0 7 608  Yes Yes Yes  Yes  Yes 
MIROC3.2(medres) 2 7 608 Yes Yes Yes Yes No Yes 4 No 
MRI-CGCM2.3.2 1 3 601 No No Yes Yes Yes Yes 13 Yes 
PCM 3 11 506  No No   No 10 Yes 
UKMO-HadCM3  0 6 608  Yes Yes   Yes 6 Yes 
UKMO-HadGEM1        0 2 674  No No   Yes  Yes 

 
 
           GROUPINGS                                       F1                                             F2                        F3                             F4 
 
 
F1,F2,F3 and F4 represent the average failure rate within each group of columns. 
 

Column A: Number of rainfall criteria failed (Smith and Chandler, 2009) 
 
Column A reflects the performance of the GCMs in terms of their ability to capture key features of 
Australian seasonal rainfall only, according to the criteria adopted by Smith and Chandler (2009). The 
values represent the number of demerit points (or failures) based on RMS error and spatial 
correlation thresholds (see Appendix A). There are two thresholds for each season and only 10 
models (see Table 2) pass both criteria in all four seasons. 
 
 
Column B: Demerit points based on criteria for rainfall, temperature and MSLP (Suppiah et al., 
2007) 
 
Column B represents the assessment by Suppiah et al. (2007) and also represents demerit points (in 
this case the maximum is 24, comprising two metrics, three variables and four seasons). The best 
performing GCM in this assessment is ECHAM5 (one demerit point) while the worst are GISSEH and 
IPSL (14 demerit points). 
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Column C: M-statistic representing goodness of fit at simulating rainfall, temperature and 
MSLP over Australia (Watterson, 2008) 
 
Column C shows the skill scores (or “M-statistic”) calculated by Watterson (2008) and represents 
how well each GCM captures features of the rainfall, temperature and MSLP fields over Australia in 
each of the four seasons. In this case the best performing GCM is again ECHAM5 (700) and the worst 
GISSEH (304). 
 
Column D: Satisfied criteria for daily rainfall over Australia (Perkins and Pitman, 2008) 
 
Column D indicates which GCMs satisfactorily captured features of the daily temperature and daily 
rainfall probability distributions over 12 Australian regions according to the criteria of Perkins and 
Pitman (2008). Note that only 14 GCMs sets of GCM results were available for this assessment.  
 
Column E: Satisfied ENSO criteria (Min et al., 2005; van Oldenborough et al., 2005) 
 
Column E represents an assessment based on simulations of the ENSO phenomenon. According to the 
assessment of Van Oldenborgh et al. (2005) the following four models do not provide credible 
representations of ENSO: CCSM3, CNRM-CM3, UKMO_HADGEM1 and GISS-ER. The ECHO-G model 
was not included in the van Oldenborogh (2005) assessment but an assessment by Min et al. (2005) 
indicates that this model also has difficulty reproducing the ENSO phenomenon. In particular, the 
amplitude of the simulated SST anomalies is almost twice that observed while the frequency 
spectrum is dominated by a two-year peak compared to the observed three-seven year peak, possibly 
as a result of relatively poor horizontal resolution (400km) (Guilyardi et al., 2004). The ENSO 
performance criteria may appear to be severe but, in the case of Australia, it is difficult to argue for 
the inclusion of model results for several decades into the future when it has been judged that the 
model appears incapable of adequately simulating important changes to the climate system that 
occur on a time scale of just a few years.  
 
Column F: Satisfied criteria for SST variability (Overland and Wang, 2007) 
 
Column F indicates which GCMs satisfied criteria for North Pacific SST variability according to 
Overland and Wang (2008).  
 
Column G: Satisfied criteria for daily rainfall over MDB region (Maximo et al., et al., 2008)  
 
Column G represents the results of a similar assessment carried out by Maximo et al. (2008), but this 
time restricted to a single region over south-eastern Australia.  
 
Column H Satisfied criteria for MSLP over MDB region (Charles et al., 2007) 
 
Column H represents the results of the assessment by Charles et al. (2007), for the same region, but 
focusing on daily and seasonal MSLP patterns. 
 
Column I: Below median errors for 14 variables (Reichler and Kim, 2008) 
 
Column I represents an assessment of GCM performance over the northern hemisphere in terms of 
the number of below median rankings for temperature, MSLP and rainfall. Column I summarizes 
above and below median performing GCMs according to the assessment by Reichler and Kim (2008) 
in which they assessed 14 different variables at the global scale.  
 
Column J: Below median rankings for temperature, MSLP and precipitation over NH (Walsh et 
al., 2007) 
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Column J represents an assessment of temperature, MSLP and precipitation over NH (Walsh et al., 
2007).  
 
Column K: Below median rankings for 4 variables over Antarctica and the globe (Connolley et 
al., 2007) 
 
Column K represents an assessment of four variables over Antarctica and the globe (Connolley et al., 
2007). 

 
 
Although Table 2 provides a comprehensive overview of GCM performance against a variety of 
metrics, variables and spatial scales, not all GCMs were included in all the assessments.  
 
Because the individual assessments are not completely independent, there is some degree of overlap 
in the results which could skew any overall assessment based on simple averaging, particularly as 
most of them are based on results over the Australian continent. If we group the assessments into 
those over Australia (Columns A, C, D and E) those over the relatively small MDB region (F and G), 
those over the Pacific Ocean (B and I) and those over the globe and/or hemispheres (H, J and K), we 
can partly account for some of this interdependence. For each geographic region we firstly calculate 
the average failure rate, and then form the average of these four values to provide an overall failure 
rate, shown in Table 3. Here the results have been ranked and the GCMs grouped into those with 
failure rates greater or equal to 60 per cent (highlighted in red), those with failure rates greater than 
30 per cent and less than 60 per cent (highlighted in yellow) and those with failure rates less than or 
equal to 30 per cent (highlighted in blue). While this process is relatively crude, a similar result is 
achieved by simply calculating the simple average failure rate across all the columns of Table 2. 
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 Table 3. GCM rankings based a weighted average of the failure rates in Table 2. A subset of 15 GCMs 
has been highlighted. (These GCMs provided daily data to the CMIP3 data base and have been used in 
impact studies over selected regions as part of the Sustainable Yields programs.) 

 
 
 

 
 
 
Studies suggest that the uncertainty associated with derived climate change projections can 
potentially be reduced by identifying and omitting the poorer performing GCMs. This effect can be 
partly detected by plotting the projected changes from each GCM as a function of some measure of 
model performance. Walsh et al. (2007) show that there is a tendency for models with smaller errors 
to simulate a larger greenhouse warming over the Arctic. Since several models have substantially 
smaller systematic errors than the other models, the differences in warming imply that the choice of a 
subset of models may offer a viable approach to narrowing the uncertainty and obtaining more 
robust estimates of future climate change in regions such as Alaska, Greenland and the broader 
Arctic.  
 
This approach can also be adopted for other regions and variables of interest. Evidence of clustering 
of projected changes amongst the better performing models may indicate that the poorer performing 
models may be a source of uncertainty, i.e. if the better performing models tend to agree, then this 
can be construed as evidence that GCM performance is relevant to the variable and region of interest. 
Otherwise there is little point in attempting to distinguish between the different results and the 
uncertainty remains. 
 
We have analyzed the projected percentage changes in annual rainfall over four regions from each of 
15 GCMs (for which daily data were supplied to the CMIP3 data base). These 15 GCMs are highlighted 
in Table 1 but do not include the top three ranked GCMs. Figure 1 provides an example of how the 

GCM ID Weighted failure rate (%) 
(Average of F1 F2 F3 and 

F4 from Table 2) 
UKMO-HadCM3  0 
MIROC3.2(hires)  8 
GFDL-CM2.1 13 
GFDL-CM2.0 20 
MIROC3.2(medres) 25 
ECHO-G 33 
UKMO-HadGEM1        33 
ECHAM5/MPI 38 
MRI-CGCM2.3.2 40 
CCSM3 44 
CGCM3.1(T63) 50 
GISS-AOM 58 
INM-CM3.0 59 
CGCM3.1(T47) 63 
FGOALS-G1.0 63 
CSIRO-Mk3 73 
CNRM-CM3          75 
IPSL-CM4 75 
BCCR-BCM2.0 88 
GISS-ER 88 
PCM 89 
GISS-EH 100 
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model rankings can be utilized. In the case of Tasmania (TAS), the projected changes, from this 
sample of GCMs, are unaffected by the GCM rankings. However, there is a relatively small range of 
values with a mean value of close to -2 per cent. 

In the case of northern Australia (NA), the mean change is close to zero, although there is a relatively 
large range of projected changes (-13 per cent to +6 per cent). There is an indication that the better 
performing GCMs yield lower values. In the case of south-west Western Australia (SW), there is a 
much more pronounced difference between the higher and lower ranked GCMs. The range is still 
relatively large (-14 per cent to +5 per cent) and the mean is close to -5 per cent. However, clustering 
amongst the better performing models suggests this may underestimate the drying. 
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Figure 1. Projected percentage change in annual rainfall as a function of GCM ranking (best=1, 
worst=15, see Table 3): (a) Northern Australia, (b) Tasmania and (c) South-west Western Australia. 
 
 
Finally, Figure 2 shows the effect on the projected changes to both MAM and JJA rainfall over the MDB 
region. The top five (out of the 15) models project decreases in MAM rainfall, while the top four 
project decreases in JJA rainfall. While the effect is not strong, it does suggest a stronger consensus 
towards decreases for this region. Note that Smith and Chandler (2009) detected a stronger effect 
when they analyzed the projections from all 22 GCMs. 
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Figure 2. As for Figure 1, except for MAM and JJA seasonal rainfall for the MDB region. 
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6. Discussion  
 
Is it possible that we are interpreting relative performance as an indication of absolute performance? 
i.e. are we unfairly penalizing GCMs for being ranked lowly when, in fact, all the GCMs may be 
perfectly adequate? While this simple methodology can be criticized, we argue that the relative 
ranking of the GCMs is unlikely to be significantly altered by the employment of more sophisticated 
methods. 
 
Finally, one argument against penalizing available model results, based on subjective measures of 
performance, is that, we cannot really know at this point in time which models provide the best 
results (since we must wait for the passage of time to make this assessment). Therefore it is folly to 
penalize models which may, in fact, contain correct climate change signals. The answer to this 
argument is, simply, that at this point in time we are more interested in a practical question (that 
end-users typically ask of scientists):”Given a wide range of climate model results, which do you 
regard as being the most reliable and why?”  In fact, we are not concerned so much with being proved 
“right” or “wrong” with regard to climate change projections at the end of the 21st century, as with 
providing expert advice that is both transparent, and can be acted on now. If the methodology used to 
sort the available information and generate advice is sound, then the important point is that due 
diligence is followed. There is no point in contemplating the fact that some (unspecified) apparently 
poor model results have been penalized may contain correct climate change signals since this would 
imply some particular unrecognized skill. If this cannot be recognized now, using fairly simple and 
logical criteria, then it is pointless arguing that all model results need to be treated equally otherwise, 
in an extreme sense, there would be no point in excluding the results of a random number generator.  
 
 
7. Conclusions 
 
We have summarized a number of GCM assessments which compare features of the simulated climate 
from 22 CMIP3 GCMs with available observations. The result is a ranking of the GCMs (Table 3) which 
indicates some consistently well performed GCMs and some consistently poorly performed GCMs. 
When we consider the projected changes in annual rainfall for three Australian regions from a sample 
of 15 GCMs, we find little evidence that rankings are important for northern Australia and Tasmania. 
However, it is apparent that the better performing GCMs indicate a drier future for south-west 
Western Australia than the remainder. There is also evidence that the better performing GCMs favour 
decreases for the MDB for the MAM and JJA seasons.  
 
On a practical level, it is recommended that researchers: 
 

(1) consider excluding the results from the poorer performing GCMs. There is enough evidence to 
indicate that up to nine GCMs could be excluded on the basis of this study. There is very little 
reason to include the results from at least one (GISSEH). 

 
(2) plot projected changes as a function of GCM rankings (as done in Figures 1 and 2) in order to 

detect evidence of clustering. This can potentially lead to less uncertain results (i.e. a smaller 
range). 
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Appendix A. 
 
The models used in this study. For details see: 
http://www-pcmdi.llnl.gov/ipcc/info_for_analysts.php   
 
 
 

CMIP3 ID Approximate horizontal 
resolution (km) 

Flux 
Adjusted ? 

BCCR-BCM2.0 200  
CCSM3 150  

CGCM3.1(T47) 400 Yes 
CGCM3.1(T63) 200  

CNRM-CM3 200  
CSIRO-Mk3.0 200  

ECHAM5/MPI-OM 200  
ECHO-G 400  

FGOALS-g1.0 300  
GFDL-CM2.0 300  
GFDL-CM2.1 300  

GISS-AOM 300  
GISS-EH 400  
GISS-ER 400  

INM-CM3.0 400 Yes 
IPSL-CM4 300  

MIROC3.2(hires) 125 Yes 
MIROC3.2(medres) 300  

MRI-CGCM2.3.2 300 Yes 
PCM 300  

UKMO-HadCM3 300  
UKMO-HadGEM1 125  

 

http://www-pcmdi.llnl.gov/ipcc/info_for_analysts.php
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Appendix B 
 

Originating Group(s) Country CMIP3 I.D. 

Bjerknes Centre for Climate Research Norway BCCR-BCM2.0 
National Center for Atmospheric Research USA CCSM3 

Canadian Centre for Climate Modelling & Analysis Canada CGCM3.1(T47) 

Canadian Centre for Climate Modelling & Analysis Canada CGCM3.1(T63) 

Météo-France / Centre National de Recherches Météorologiques France CNRM-CM3 
CSIRO Atmospheric Research Australia CSIRO-Mk3.0 
Max Planck Institute for Meteorology Germany ECHAM5/MPI-OM 
Meteorological Institute of the University of Bonn, Meteorological 
Research Institute of KMA, and Model and Data group.  

Germany / 
Korea 

ECHO-G 

LASG / Institute of Atmospheric Physics China FGOALS-g1.0 
US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics 
Laboratory 

USA GFDL-CM2.0 

US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics 
Laboratory 

USA GFDL-CM2.1 

NASA / Goddard Institute for Space Studies USA GISS-AOM 
NASA / Goddard Institute for Space Studies USA GISS-EH 

NASA / Goddard Institute for Space Studies USA GISS-ER 

Institute for Numerical Mathematics Russia INM-CM3.0 
Institut Pierre Simon Laplace France IPSL-CM4 
Center for Climate System Research (The University of Tokyo), 
National Institute for Environmental Studies, and Frontier Research 
Center for Global Change (JAMSTEC) 

Japan MIROC3.2(hires) 

Center for Climate System Research (The University of Tokyo), 
National Institute for Environmental Studies, and Frontier Research 
Center for Global Change (JAMSTEC) 

Japan MIROC3.2(medres) 

Meteorological Research Institute Japan MRI-CGCM2.3.2 
National Center for Atmospheric Research USA PCM 
Hadley Centre for Climate Prediction and Research / Met Office UK UKMO-HadCM3 
Hadley Centre for Climate Prediction and Research / Met Office UK UKMO-HadGEM1 

 

 
 


